Введение
Если функция, определенная и непрерывная в заданном промежутке, не является в нем монотонной, то найдутся такие части этого промежутка, в которых наибольшее и наименьшее значение достигается функцией во внутренней точке, т.е. между границами данного промежутка.
Говорят, что функция имеет в точке максимум, если эту точку можно окружить такой окрестностью (x0- ,x0+), содержащейся в промежутке, где задана функция, что для всех её точек выполняется неравенство:
f(x) < f(x0)
Иными словами, точка x0 доставляет функции f(x) максимум, если значение f(x0) оказывается наибольшим из значений, принимаемых функцией в некоторой (хотя бы малой) окрестности этой точки.
Пусть величина y является функцией аргумента x. Это означает, что любому значению x из области определения поставлено в соответствии значение y. Вместе с тем на практике часто неизвестна явная связь между y и x, т.е. невозможно записать эту связь в виде y=f(x). В некоторых случаях даже при известной зависимости y=f(x) она настолько громоздка (например, содержит трудно вычисляемые выражения, сложные интегралы и т.п.), что ее использование в практических расчетах затруднительно.
Наиболее распространенным и практически важным случаем, когда вид связи между параметрами x и y неизвестен, является задание этой связи в виде некоторой таблицы {xi yi}. Это означает, что дискретному множеству значений аргумента {xi} поставлено в соответствие множество значений функции {yi} (i=0,1…n). Эти значения - либо результаты расчетов, либо экспериментальные данные. На практике нам могут понадобиться значение величины y и в других точках, отличных от узлов xi. Однако получить эти значения можно лишь путем очень сложных расчетов или проведением дорогостоящих экспериментов.
Таким образом, с точки зрения экономии времени и средств мы приходим к необходимости использования имеющихся табличных данных для приближенного вычисления искомого параметра y при любом значении (из некоторой области) определяющего параметра x, поскольку точная связь y=f(x) неизвестна.
Этой цели и служит задача о приближение (аппроксимации) функций: данную функцию f(x) требуется приближенно заменить (аппроксимировать) некоторой функцией g(x) так, чтобы отклонение (в некотором смысле) g(x) от f(x) в заданной области было минимальным. Функция g(x) при этом называется аппроксимирующей.
Для практики весьма важен случай аппроксимации функции многочленом:
g(x)=a0+a1x+a2x2+…+amxm
При этом коэффициенты aj будут подбираться так, чтобы достичь наименьшего отклонения многочлена от данной функции.
Если приближение строится на заданном множестве точек {xi}, то аппроксимация называется точечной. К ней относятся интерполирование, среднеквадратичное приближение и др. При построении приближения на непрерывном множестве точек (например, на отрезке [a,b]) аппроксимация называется непрерывной или интегральной.