Технология нанесения антикоррозийного покрытия
На подготовленную поверхность резервуаров ровным слоем наносят грунт при помощи пневматического распылителя. При этом большое внимание уделяется исключению образования подтеков. Данная операция направлена на защиту металла от коррозии и сцепляемость лакокрасочных покрытий с металлом.
После завершения данных работ на наружную поверхность наземных резервуаров наносят лакокрасочные покрытия светлых типов, обладающие тепло отражательным эффектом и антикоррозионными свойствами.
Окончательно окрашенная поверхность должна иметь одинаковую толщину слоя без подтеков и других дефектов.
Защита днища резервуара от почвенной коррозии
Проблема коррозии днища резервуара весьма серьезна. Например, из-за сквозных коррозионных разрушений днищ резервуаров типа РВС (для отстоя нефти) и промысловых трубопроводов имеют место многочисленные разливы нефти, загрязняющие окружающую среду, а также возникает необходимость в замене днищ резервуаров уже после 5-6 лет их эксплуатации и это при диаметре днища, составляющего, например для РВС-20 000 почти 50 м.
От почвенной коррозии днища резервуаров защищают гидроизоляционным слоем, а также используют электрохимическую защиту, когда к днищу резервуара электрически присоединяют протекторы.
Электрохимическая защита от коррозии
Электрохимическая протекторная защита металлов от коррозии основана на использовании замечательного явления - прекращения коррозии металлов под действием постоянного электрического тока.
Поверхность любого металла, как известно, гальванически неоднородна, что и является основной причиной его коррозии в растворах электролитов, к которым относятся морская вода, все пластовые и все подтоварные воды. При этом разрушаются только участки поверхности металла с наиболее отрицательным потенциалом (аноды), с которых ток стекает во внешнюю среду, а участки металлов с более положительным потенциалом (катоды), в которые ток втекает из внешней среды, не разрушаются.
Механизм действия электрохимической защиты заключается в превращении всей поверхности защищаемой металлической конструкции в один общий неразрушающийся катод. Анодами при этом будут являться подключенные к защищаемой конструкции электроды из более электроотрицательного металла - протекторы. Поэтому такая электрохимическая защита называется протекторной.
Электрический защитный ток при протекторной защите получается вследствие работы гальванической пары: протектор - защищаемая конструкция. При своей работе протекторы постепенно изнашиваются (анодно растворяются), защищая при этом основной металл, поэтому за рубежом протекторы называют «жертвенными анодами».
Электрохимическая защита является единственно эффективным средством против наиболее локальных видов коррозии металлов (питтинговой, язвенной, щелевой, контактной, межкристаллитной, коррозионного растрескивания) и при этом предотвращает дальнейшее развитие уже имеющихся коррозионных разрушений, т. е она одинаково эффективна как для строящихся, так и для находящихся в эксплуатации резервуаров и другого оборудования.
Протекторная защита обычно применяется совместно с лакокрасочными покрытиями. Такое сочетание пассивной защиты, какой является окраска, и активной защиты, к которой относится протекторная защита, позволяет уменьшить расход протекторов и тем самым увеличить срок их службы, обеспечить более равномерное распределение защитного тока по поверхности защищаемых конструкций и, наконец, компенсировать все дефекты покрытия, связанные с неизбежным его разрушением при монтаже, транспортировке и в процессе его эксплуатации, в том числе вследствие естественного старения (набухания, вспучивания, растрескивания, отслаивания).
Защитный ток идет именно на те участки поверхности металла, где нарушена плотность покрытия, достигая всех затенённых участков, щелей, зазоров и предотвращая коррозию оголившегося металла. При этом следует отметить, что оголенной поверхности металла при его катодной поляризации в пластовой и подтоварной водах выпадает катодный солевой осадок, состоящий из нерастворимых солей кальция и магния и играющий роль дополнительного покрытия.
Вместе с тем, протекторная защита в состоянии обеспечить полную защиту от коррозии стальных сварных сооружений и без их окраски. В этом случае должна быть обеспечена более высокая плотность защитного тока на неокрашенной стальной поверхности, что потребует увеличения количества протекторов и усилит их расход. Однако, принимая во внимание высокую трудоемкость нанесения лакокрасочных покрытий, особенно на резервуарах, уже находящихся в эксплуатации, такой способ противокоррозионной защиты с помощью установки только одних протекторов представляется для них весьма перспективным.
Поскольку основная масса металлических конструкций делается, как правило, из стали, в качестве протектора могут использоваться металлы с более отрицательным, чем у стали электродным потенциалом. Из основных их 3 - цинк, алюминий и магний.
При этом следует принимать во внимание, что если сдвиг потенциала в отрицательную сторону превысит определённое значение, возможна так называемая перезащита, связанная с выделением водорода, изменением состава приэлектродного слоя и другими явлениями, что может привести к ускорению коррозии.
Антикоррозийная защита внутренней поверхности резервуаров
Работы по антикоррозийной защите внутренних поверхностей резервуаров очень трудоемкие, что связано со сложностью операций как по подготовке внутренних поверхностей к нанесению защитного слоя, так и по их окрашиванию.